
UpLib: A Universal Personal Digital Library
System

William Janssen, Kris Popat

22 November 2003

TR−03−16

ACM Symposium on Document Engineering, Nov 20−22, 2003, Grenoble, France.

Portions of this paper are Copyright 2003, Palo Alto Research Center

This paper is part of the PARC Technical Report series.

For more information on PARC, please visit our Web site at http://www.parc.com/.
Our address is:

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA

You can contact us via telephone at 650−812−4000.
You can also send e−mail to info@parc.com; it will be forwarded appropriately.

UpLib: A Universal Personal Digital Library System

William C. Janssen and Kris Popat
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California, USA

{janssen,popat}@parc.com

ABSTRACT
We describe the design and use of a personal digital library
system, UpLib. The system consists of a full-text indexed
repository accessed through an active agent via a Web inter-
face. It is suitable for personal collections comprising tens
of thousands of documents (including papers, books, pho-
tos, receipts, email, etc.), and provides for ease of document
entry and access as well as high levels of security and pri-
vacy. Unlike many other systems of the sort, user access to
the document collection is assured even if the UpLib system
is unavailable. It is “universal” in the sense that documents
are canonically represented as projections into the text and
image domains, and uses a predominantly visual user in-
terface based on page images. UpLib can thus handle any
document format which can be rendered as pages. Provision
is made for alternative representations existing alongside the
text-domain and image-domain representation, either stored
or generated on demand. The system is highly extensible
through user scripting, and is intended to be used as a plat-
form for further work in document engineering. UpLib is as-
sembled largely from open-source components (the current
exception being the OCR engine, which is proprietary).

Keywords
Personal digital library, page image, thumbnail interfaces,
web interfaces, document management, document reposi-
tory

1. INTRODUCTION
Our Universal Personal Digital Library (UpLib) project

addresses the capture, secure storage, organization, access,
and use of documents involved in a person’s day-to-day ac-
tivities. Among those documents are credit card bills, fam-
ily pictures, favorite books, letters of various kinds, receipts,
tax forms, Web pages, and the other flotsam of modern life.
As researchers, we also place particular emphasis on tech-
nical papers and notes, both ours and those of colleagues.

Copyright 2003, Palo Alto Research Center.
A version of thispaper waspresented at theACM Symposium onDocument
Engineering, November 20–22, 2003 in Grenoble, France.

Figure 1: Document icons in the second version of
our system. Each icon is generated using a constant-
area algorithm, which allocates the same amount of
area to each thumbnail, regardless of orientation.
This approach allocates a fair amount of space to
landscape-format documents, and makes it easy to
distinguish between letter-size and A4-size docu-
ments by their relative heights. Clicking on an icon
opens that document in a page-view mode.

Our intention is to deploy this library in multiple forms, in-
cluding one that can be carried always in a small device like
a PDA. Our approach uses both document images and doc-
ument text but emphasizes images; we feel that the image
domain presents certain unique opportunities not available
in the symbolic domain, including a degree of universality
and resistance to “bit-rot” or obsolescence of digital format.

It is likely that many if not most of the documents entered
into the system will rarely be accessed, and some never ac-
cessed at all. It is nevertheless important that all documents
entered into the system be retrievable so that the originals
— paper or digital — may be discarded. Our personal infor-
mation needs cannot be predicted perfectly in advance, so it

Figure 2: Retrieving and browsing a book in our
first prototype. On a 600 MHz Intel Pentium III
machine, each page displays in the order of 200 msec,
without prior caching, irrespective of position in the
book. Top left: search results for “Tarjan.” Re-
maining images: page views as the thumbnail bar
to the left is browsed. The functionality is simi-
lar to that provided by Adobe Acrobat Reader, but
somewhat faster and without requiring a plug-in or
separate viewing application.

is safer (and now feasible) to store virtually everything, tak-
ing advantage of plummeting hard disk costs, and shifting
the burden of filing onto a well-designed retrieval process.
So in addition to the day-to-day tasks of looking up research
papers and notes, examples of unanticipated questions easily
answerable with the UpLib include “what diameter contact
lenses did my optometrist in Massachusetts prescribe?” and
“how much did we pay in un-reimbursed medical expenses
in 2002?” The potential effect on filing practices and infor-
mation availability of adopting a digital personal document
library into daily work-flow appears to be significant.

We feel that these considerations mandate the following
design choices in a personal library system, and we attempt
to fulfill them with the UpLib system:

• Universality: Documents can originate from any source
and in any initial format;

• Availability: Documents – even large books – can be
easily found, browsed, and read with a standard Web
browser, and documents are still accessible when the

personal library is not running;

• Extensibility: Functionality can be easily added to
handle new types of search, conversion, organization,
or access;

• Searchability: Documents can be retrieved using a nat-
ural combination of full-text retrieval over metadata
and category information with visual search among ini-
tially retrieved thumbnail arrays to achieve a comfort-
able balance of precision, recall, and user involvement;

• Scalability: Tens of thousands of documents can be
accommodated without reducing the system’s respon-
siveness; and

• Security: Documents such as personal medical and fi-
nancial records can be stored safely.

The next section briefly reviews other work in this field;
those already familiar with this work may wish to skip di-
rectly to Section 3, where we begin the description of the
two prototypes of an UpLib system that have been built, as
part of the PARC Productive Reading effort. We describe
these prototype systems in three functional stages: capture,
document normalization and storage, and retrieval and use
of the stored documents. Finally, we describe future work
that we expect to do with the UpLib system of personal
document management.

2. PRIOR WORK
The term “digital library” is broad enough to preclude

a sensible exhaustive listing of all digital library systems;
indeed the the World-Wide Web itself has emerged as a de-
facto digital library of a general sort. It is therefore advanta-
geous for our purposes to narrow the sense of the term digital
library system; here we take it to mean: an integrated set
of software, hardware, and protocol elements that together
provide a means of storing, managing and accessing docu-
ments in digital form. All such digital library systems will
have some degree of commonality among their functionali-
ties; still, they can and do differ considerably in the specifics
of their targeted end-use, their emphasis of which features
are important, their detailed design choices, and their im-
plementation. The main features and design choices behind
several existing digital library systems were recently sum-
marized by N. Fuhr et al. [10]. The list of systems presented
there is by no means exhaustive, but the features and design
choices appear to be representative of the current technology
and practice.

Digital library systems can be categorized along several
dimensions, e.g.: proprietary versus open; supporting large-
scale versus limited collections; supporting many users si-
multaneously or few. Here we are primarily concerned with
supporting the use and management of documents encoun-
tered in a person’s or small group’s day-to-day activities, in
the absence of a system administrator. Therefore, the sys-
tem must be both robust and lightweight. The system is also
intended to be adaptable to evolving or newly recognized
needs, and to serve as a research platform upon which to
test new ideas or dovetail with complementary technologies
in computer-enhanced reading and visualization. There-
fore, extensibility, especially by non-guru users, is impor-
tant to us as well. Proprietary document-management sys-
tems — both enterprise-level systems such as Documentum

(http://www.documentum.com/), and consumer-grade sys-
tems such as PaperPort (http://www.scansoft.com) — do
not meet these requirements for ease of extensibility. There
are few extant digital library systems we know of that are
plausible fits to our requirements; the two that come clos-
est are the Personal Libraries system by Wilensky at U.C.
Berkeley [22] and the Greenstone open-source system by
Witten et al [23].

The Berkeley Personal Libraries system is premised largely
on a distinction between collection and repository; the for-
mer being a specification of some set of documents anal-
ogous to a list of pointers, and the latter embodying the
“place” where individual documents are kept, or more pre-
cisely, an means of storing and retrieving individual doc-
uments. It provides cataloging and full-search capability
through the Cheshire-II (http://cheshire.lib.berkeley.edu/)
system. The Personal Libraries system is generally well-
suited to the types of document storage and access tasks
encountered in an academic setting, such as the provision
of collections of research papers produced by or of interest
to a research group, or the compilation of selected papers
for course readers. It has provision for extensibility in at
least two ways: by providing a customized style sheet that
governs the display of search results, and by adding access
functionality through a Multivalent client [17]. It also has a
reasonable security/privacy mechanism, intended to address
digital rights issues, but equally suitable to the protection
of private personal data. However, from the descriptions we
have of the system, it is not clear that its core functional-
ity at the server end can be easily extended, particularly by
non-expert developers. (Extensibility on the client side is
provided through use of Multivalent). An instance of this
system — to our knowledge, the main instance — can be
accessed at http://elib.cs.berkeley.edu/pl/.

The Greenstone system is a public, extensible open-source
project intended to grow in functionality as people con-
tribute to it, to support interaction with large-scale mul-
timedia collections. It seeks to provide a uniform frame-
work for both searching and browsing, while providing for
customizability via configuration files. It defines a specific
format called GML,, a variant of HTML, into which docu-
ments must be converted in order to store them in a col-
lection. Greenstone builds on the earlier Managing Giga-
bytes [24] programs, and like the Berkeley Personal Libraries
system, takes advantage of ideas from earlier work such as
Dienst [9] (see below) and Harvest [6]. Compared to the
system we present here, the Greenstone project is relatively
heavyweight — it takes pains to be scalable to very large
scale collections, and its multimedia document model (and
concomitant specialized GML format into which documents
must be imported) are much more general than is needed
for the types of use we are concerned with here. Moreover,
we are concerned in our work that for people to adopt the
system into their practice, it must allow them to retain any
existing storage and access practices they may have individ-
ually evolved alongside the additional functionality provided
by the system, rather than require them to commit wholly
and irrevocably to an unfamiliar system whose future cannot
be certain to them.

Dienst [9] was a relatively early web-based document stor-
age, search, and access system intended for the dissemina-
tion of technical reports. Dienst saw fairly broad deployment
through the mid-to-late 1990s, particularly among computer

science departments in U.S. universities. Its strength was in
its strong leveraging of the then-emerging World-Wide Web,
with its standard protocols and its broadly deployed clients
in the form of browsers. Dienst in turn had been influenced
in part by an early document infrastructure system devel-
oped in our laboratory at PARC in the early 1990s called
System 33 [18]. Dienst relied on standard HTML forms
for user input, the built-in cability of browsers to display
images for its output, and the Common Gateway Interface
(“cgi-bin”) mechanism for executing its storage, search, and
retrieval functions. As such it was even closer in its concep-
tion and design to UpLib (particularly to the first prototype
of UpLib) than the two more “modern” systems reviewed
above. But unlike UpLib, it was not designed as a personal
digital library system, i.e., one to be easily administered and
extended by its users.

Two other research efforts — Haystack [1] from MIT and
Presto [11] from PARC — should be mentioned here as
well, primarily for their conceptual relationship to our work
with respect to personalization and the role of metadata.
Haystack emphasizes personalization primarily by adapting
the document search mechanism in a manner that is in-
formed by the user’s interests, as manifested by the contents
of the documents that the user already has in his repository.
The document collection and metadata are represented as
a large graph, part of which is kept in fast memory, and
the entirety of which is stored for use over multiple sessions
through the use of persistent database technology. Rela-
tive to the system described here, Haystack is less image-
centric and is aimed at handling a larger variety of personal
documents including email, task lists, and appointments.
Metadata plays a key role, and recent work on Haystack has
emphasized its methods for the robust and effective repre-
sentation and communication of metadata [13].

Presto [11] also emphasizes the role of personalized meta-
data in a filesystem, by eschewing a traditional location-in-
hierarchy scheme for document organization and storage in
favor of one based on a flexible combination of metadata
elements. Collections of documents become dynamic, essen-
tially defined by conditions satisfied by their metadata, and
multiple categorization of documents becomes natural and
automatic (a property it inherited from the earlier PARC
project Babar). While our emphasis is on a repository and
not a filesystem, our notion of collection is similar in spirit
to its counterpart in Presto.

3. DOCUMENT CAPTURE
Document capture and retention is done for a number of

different purposes. One study of information capture pro-
posed 10 reasons why documents are captured [8]. Of these,
half seem directly related to personal document libraries,
while four of the remaining five are about collective docu-
ment use in small groups. In addition, this study observed
that 65% of the paper documents being captured were stan-
dard letter-size, and of those, 5/8 were only one page in
length, while only 6% were longer than 3 pages in length.
Many of the other documents were handwritten notes or
newspaper clippings.

Documents are similarly captured by various means and
in various formats. The proliferation of small cheap digital
cameras suggest that they will also be used extensively for
informal document capture of small paper documents, as
well as for taking pictures and movies. Effective use of these

Figure 3: Results of a search in our first system,
implemented in PHP4 and calling htsearch through
the cgi-bin mechanism. The search results from htdig
were parsed by the PHP script to form the names
of the precomputed thumbnail images, which were
then used to make HTML4 image buttons for the re-
trieved documents. Clicking on one of the retrieved-
document buttons had an effect determined by func-
tion.

documents requires a number of automated image enhance-
ment steps, to de-warp and otherwise clean up the document
image. A number of papers have already discussed these
problems and potential solutions, such as the CamWorks
paper [16]. In addition, the increasing availability of docu-
ments in electronic forms such as HTML and PDF makes
it clear that these formats have to be supported as well in
a personal document library. Indeed, Web “clippings” may
come to replace conventional newspaper clippings.

Our current systems allow the use of digital cameras or
scanners, for paper documents, and document converters,
for electronic documents. Scanning can be done either man-
ually or automatically with systems such as Xerox’s Flow-
port, which mails a PDF file containing the scanned docu-
ment to the user. Document converters such as PARC’s Sys-
tem 33 [18] and documents.com allow us to produce TIFF or
text versions of formats such as PDF, HTML, or Microsoft
Word. In general, we feel that the system should be flexi-
ble enough to support any mode of user document capture,
and we expect a large number of custom capture tools to
aggregate around a successful document library technology,
each supporting a particular workflow microculture. For in-
stance, we should be able to “print to” an UpLib repository
from an application, or drag a document onto the UpLib
from a desktop view, or instruct an UpLib to accept a partic-
ular document from a command line. Tools to support each

Figure 4: Search results in the second system. Out-
put from Lucene is mapped by the Python daemon
to document descriptions consisting of the scores,
thumbnails, and summaries of the documents; the
icons similarly serve as HTML links to retrieve the
associated document. A thumbnails-only display of
results is also available.

of these modes of capture have in fact been constructed for
our current system; they are not considered part of UpLib
proper.

To encourage the proliferation of appropriate capture and
input tools, we specify a document folder format which tools
can deposit the captured document in. This consists of a di-
rectory containing three files, each of which is a projection of
the document into a particular document space. The three
projections that we are currently experimenting with are
text, which is a file containing the symbolic text of the doc-
ument, if it has any; page image, which is a multi-page TIFF
file containing full-color page images of the document; and
metadata, which is a file containing metadata properties of
the document, represented as IETF RFC 822 “unstructured
field” headers, and tagged for character set and language
information as specified in RFCs 2231 and 2047. The actual
metadata fields used are up to the user, though the system
makes good use of certain fields such as “Title” and “Date”
if they are present. In addition to these three files, the orig-
inal digital version of the document is copied to a sub-folder
of the directory, regardless of format. The directory is then
passed to the UpLib repository daemon via an HTTP POST
operation.

We also provide certain building blocks, which can be used
to assemble particular capture tools. For example, some for-
mats have simple and effective ways of obtaining the text of
a document, such as the pdftotext tool for PDF. However,
many scanned formats require the use of optical character
recognition. We provide an OCR Web service, which when

Figure 5: The page view is computed for a screen
at least 1024 pixels high, and is quite readable as
the image has been properly anti-aliased. The small
page icons on the left-hand side are buttons provid-
ing direct access to that page; when used on the 768
× 1024 pixel screen of a Tablet PC, they are partially
occluded, but the page numbers are still visible.

called with a set of images will try various OCR scans on the
document. The output of these scans are compared to deter-
mine the best one by minimizing the empirical per-character
entropy with respect to a character-5-gram language model
(currently for English, but easily re-trainable on any other
language representable in UTF-8). The best result is then
returned to the caller. This service can be easily integrated
into various image-oriented capture tools to produce the text
projection of a document.

4. NORMALIZATION AND STORAGE
In many prior systems of this sort, a certain amount of

user anxiety was caused by not allowing the user to control
the location of the data saved by the systems; indeed, some
of these systems did not allow the user to know where his
documents were stored. We address this in UpLib by requir-
ing the user to specify a directory to be used as the root of
a particular repository. This allows the repository storage
to be integrated with the user’s normal backup procedures,
and allows direct access to the document storage in case the
UpLib server for some reason can’t be run.

When a new document folder is passed to the UpLib sys-
tem, it is assigned a unique name based on the current time,
and placed in a “staging area” in the repository to undergo
a process we call normalization, which involves producing
other versions of the document, and generating more meta-
data about the document. Certain parts of this process are
standard across all UpLib repositories, and others may be
specific to a particular user or repository.

As part of the standard normalization, we require that

Figure 6: An example of insufficient window size, as
would be the case on a low-to-moderate-resolution
display. The need to scroll, especially horizontally,
severely impedes the reading process. As mentioned
in the text, the parallel PARC UbiText project may
offer a solution, and may be adopted in UpLib for
small-screen devices.

each document be pre-rendered in several different forms
for efficient search and presentation. Our current system
requires that a file containing the symbolic text of the docu-
ment be present, that thumbnails of each page of the docu-
ment (in two different sizes) be present, and that a standard
set of HTML files for accessing the document be present in a
subdirectory of the document folder. To accomplish this, we
use a sequence of “ripper” agents, which examine, in turn,
the document in the staging area and produce alternate ver-
sions of it or augment the metadata information for it. Each
ripper agent is an instance of a class which implements the
Ripper interface; a default sequence of rippers is defined by
the system, but this sequence can easily be augmented or
modified on a per-repository basis through the standard ex-
tension mechanism.

One standard ripper generates the thumbnails for each
page of the document; in our current system a small thumb-
nail used for document overview is generated along with a
full-screen image used for actual page presentation. Another
ripper adds an automatically generated document summary
to the metadata file in the document folder. A third gen-
erates a set of HTML views of the document, drawing on
the previously generated summary and on the thumbnails
for page views. Still another generates an index entry for
the document in a full-text indexing system; our first pro-
totype used ht://Dig [21] for this purpose, and our second
uses Jakarta Lucene [20].

Since the ripper agents are run sequentially, each can take

Figure 7: The metadata form allows some metadata
about a document to be examined or updated. The
full text of the document is available at the top of the
form, for cutting and pasting into the other fields.
Controls at the bottom of the form allow metadata
to be shared with other UpLib users who may also
have this document in their repositories.

advantage of data generated by earlier agents, or operate
independently. In addition, rippers can be run outside the
scope of the document addition task, at user request. We
envision a library of possible analysis engines, each perform-
ing some metadata extraction or pre-use caching operation,
that can continuously “rove” over the contents of the li-
brary, making opportunistic improvements. For example,
as researchers, we’d like to integrate simple research paper
metadata extraction similar to that used in CiteSeer [5],
which would only run on documents that sufficiently resem-
ble technical papers. Other transformations might perform
URL extraction from Web pages, headline and dateline ex-
traction from newspaper clippings, face recognition on fam-
ily photos, or mailing-list classification on email messages;
a number of these are currently being implemented.

When the document has been normalized, the document
folder is automatically moved from the staging area to a stor-
age area, and is then often manually verified. An important
benefit of the UpLib is that it allows paper to be discarded.
Before an important paper document that has been entered
into the system can be thrown away or shredded, the digital
version must be verified for quality and retrievability. This
verification stage is by far the most time-consuming aspect
of entering documents into the system, but our experience
has shown that it is not prohibitively burdensome. For re-
trievability, an end-to-end check is made for each newly en-
tered document by attempting to retrieve using the query
terms that come to mind, and if the retrieval fails, then
those query terms are added to the “keywords” metadata
property of the document. Missing pages are checked for
in large documents by inspecting every 10 or 20 pages, and
making sure that the page numbers are incrementing by the

Figure 8: The result of a search. At the bottom,
a form allows the search to be saved as a named
persistent query.

expected amount. Scanning problems such as excessive skew
or bad exposure are checked for by quickly scrolling through
the thumbnail bar. In addition, our standard Web inter-
face allows the user to examine, and if desired modify, the
metadata about the document at this point.

5. RETRIEVAL AND USE
Once a document has been stored in the repository, most

access to it is with a Web browser over SSL-encrypted con-
nections. Currently, there are two major interfaces to the
repository: either a visual presentation of all the documents
in the repository, in one of three formats, or full-text search
over the textual and metadata projection spaces.

Examples of thumbnail overviews can be seen in Figures
1 and 3. A number of document icons, representing the
most recently used N documents, are presented; N is a user-
configurable parameter. This is convenient for a small num-
ber of documents, and tractable for a somewhat larger num-
ber. However, more sophisticated information management
techniques need to be used for the number of documents
we envision a typical repository as having. There is a great
deal of work going on in this area which we expect to benefit
from. We are currently exploring incorporation of a time-
based organization scheme, such as a perspective wall [14],
or perhaps a hierarchical clustering scheme [3], [12]. In ad-
dition to the thumbnail overviews, documents can be shown
with their abstracts, in a fashion similar to that shown in
Figure 4, or as just a list of document titles. In any of these
displays, clicking on the document will take the user to the
page-reader view of that document.

However, in a large database of documents, searching may
be the primary way of finding documents. Our prototypes
allow a search string to be specified by the user, using the
particular query syntax supported by the underlying full-
text indexing engine. This string generates a set of docu-
ment matches, and the system then needs to indicate those
matches to the user in some way. Figure 4 shows one way
of doing this, implemented in our second prototype. Each
result consists of three parts: the query relevance score, the
thumbnail image of the first page of the document, and a
summary of the text of the document. As with the thumb-
nail overviews, clicking on any result takes one to the actual
document in the page-reader view.

Figure 9: Using a client-server architecture with secure HTTP as the central communication paradigm enables
a wide range of usages.

The Lucene system used for full-text indexing in the cur-
rent version of UpLib treats each document as a cluster of
text name-value pairs called terms, and can create an in-
dex for any number of the terms. This model is remarkably
powerful; various metadata fields can be indexed separately
from the main text of the document, which in turn allows
Lucene to provide some of the capabilities of a full relational
database. Searches can be run over a default set of terms, or
over specific terms such as “Authors” or “Keywords”. In ad-
dition, a number of advanced search features are available,
such as phrase searching, fuzzy word matching, word co-
location, range searches, and Boolean combination of search
parts. We currently index a small number of standard meta-
data fields; this set is easily user-configurable, as is the set
of default terms which unqualified searches are applied to.

Searches can be assigned a name and made persistent as a
collection (see Figure 8). The set of persistent query-based
collections can be accessed with a control button at the top
of any of the repository overviews or search result forms.
Opening a persistent query will cause the query to be re-
run, and the current matching documents to be presented.
We have found the speed of the Lucene engine we are cur-
rently using to perform searches to be more than acceptable
for this purpose, even on collections comprising several thou-
sand documents.

The page-reader view (see Figure 5) of a document is the
other primary interface provided in the simple Web inter-
face of UpLib. Accessing this view from a document icon or
search result is very quick, as all components of the view are
pre-computed. The view consists of three frames: a control
area, a column of thumbnails of all the pages of the docu-
ment, and a larger anti-aliased image of a particular page.
The anti-aliased page image presentation is remarkably ef-
fective for reading, even for documents that are originally
not in “virtual paper” form, i.e. Web pages. It provides
simple page-turning controls at the right side of the page,

but any page can be accessed immediately from the column
of page thumbnails. Above the column of page thumbnails
is the control area, which normally includes buttons to re-
trieve PDF, TIFF, or text versions, delete the document (a
confirmed delete, of course), and retrieve or edit document
metadata; this control area is user-configurable, so that ad-
ditional actions on the document can easily be added. In
some cases, once it is determined that a document is of inter-
est, it is printed out for more portable reading; the printed
version is eventually discarded for recycling.

The second author has used the first prototype of this
system to eliminate one large 4-drawer filing cabinet from
his home, and one of about the same size from his office.
He currently has about 2,000 documents in his UpLib, and
accesses it daily. On average, he adds about 2.5 new docu-
ments to the system per day. We have also tried some scal-
ing experiments with approximately 3500 documents, with
no noticable decline in performance.

6. ARCHITECTURE
There are a number of ways to build systems of this type.

Our current focus is on a client-server model, with a thin
client built mainly with the “toolkit” defined by HTML and
ECMAScript, communicating over a secure RPC channel
to a server back-end written in Python that performs task-
specific actions. The simple client will thus “run” in any
modern Web browser, which, in the spirit of Dienst, we
see as a significant advantage. The server is implemented
as a daemon running on a user’s computer with the user’s
identity, exporting functionality to the client via the stan-
dard HTTP/SSL protocol. In addition to servicing RPC
calls from the client (or clients), it also performs the doc-
ument normalization tasks described above, and supports
metadata-mining agents implemented as separate threads of
control, which continually work on improving the metadata
for the repository.

User code can be loaded automatically at startup or while
the daemon is running to introduce new ripper agents or
UpLib “actions”. Users can define new actions by adding
Python modules to any directory on their “actions-path”,
and invoke any action by visiting an appropriate URL of
the form “https://host:port/action/module/action”. Param-
eters to the action may be passed as the query portion of
the URL. The action code is loaded automatically when the
URL is invoked in the server, and re-loaded automatically if
the action module changes. Actions operate on three kinds
of object, the Repository, Document, and Collection types.
User code can create new subtypes of these object types and
use them.

Additional information about the document is stored in ei-
ther the document’s metadata.txt file, or in subdirectories of
the document folder. Metadata about the whole repository
is stored in a top-level directory of the repository, devoted to
that purpose. In general, information is stored in flat files
as structured text of various sorts, to be easily accessible
when the daemon is not running. Where appropriate, this
text form is XML.

To enhance security, we use a variety of mechanisms. The
“staging area” used in the normalization phase is within the
document repository, so that partially-completed documents
are not exposed to additional risk. All communication with
the UpLib daemon is through SSL-encrypted HTTP connec-
tions, and appropriate HTTP caching directives are used
to instruct Web browsers not to store pages fetched from
the repository locally. Each repository may have a separate
pass-phrase associated with it. The pass-phrase is never
used as a command-line argument or stored on a filesystem;
instead, a SHA-1 hash of the passphrase is used. The Up-
Lib daemon issues short-lived secure cookies to the browser
when the user logs into a repository, and these cookies are
never stored to a filesystem. The repository data may be
stored in an encrypted filesystem, and we recommend so
doing for portable computer systems such as laptops.

We use a number of open-source packages in our latest im-
plementation, including the Python language, the Python
Imaging Library (PIL), the Medusa web server frame-
work for Python, various tools from the libtiff package, the
Lucene full-text indexing system from the Apache Jakarta
project, and Ghostscript. Some of our capture tools use
the xpdf package, and we’ve found the curl tool very useful
in working on the system.

7. FUTURE WORK
At PARC there are currently a number of projects aimed

at extracting various kinds of metadata from documents
or document collections. They include generation of docu-
ment co-reference graphs, measuring the “authority” of web
pages, determining reading order of words in a document by
page image analysis, and detection of topic shifts in the text
of a document. We hope to incorporate results from most
of these projects into the UpLib as rippers. In addition, we
are looking at automatic generation of a syntopicon [2] for
documents in a specific repository.

Extension of UpLib to a multi-user system for small groups
or departments is an interesting possibility. The security
framework used in UpLib means that every request is al-
ready authenticated. Multiple users could be supported
simply by allowing multiple passwords and identities, in-
stead of a single one. The major additional work would be

in designing an access control language to allow different
identities different levels of control over the system, and its
extensions. Since all accesses and actions go through a sin-
gle dispatching point in the UpLib daemon, implementing
such an ACL would be straightforward.

There is always additional user interface work to pursue.
An alternative to our current HTML/ECMAScript front end
supported by a Web browser is one written specifically for
our application, either as a stand-alone program, or perhaps
as a Java applet. Our intention is to avoid this if possible,
both to reduce barriers to adoption and to provide resis-
tance to obsolescence. A more palatable variation on this
approach is to use HTML/ECMAScript in conjunction with
a custom Web browser, such as the highly portable Multi-
valent Browser [17] being developed at Berkeley, which sup-
ports a exceptional range of document interactions, such as
annotation and “magic lenses” [4]. Direct annotation and
snippet collection, as demonstrated in the FX-PAL XLibris
system ([19]) are additional capabilities that seem appropri-
ate to a Tablet PC version of the page-reader view, and we
intend to incorporate such functionality.

We’d also like to support use of documents in smaller dis-
play contexts. The availability of small PDA devices with
high-resolution color screens and Bluetooth automatic con-
nectivity, such as the Palm Tungsten T, and other devices
with very large storage capacity, such as the Apple iPod,
suggest that pocket-size devices with both of these capa-
bilities are likely in the near future. A pocket-size wire-
lessly available “container” holding all of your personal doc-
uments, as well as serving as an MP3 player and PDA, seems
a likely outcome of these trends, and we intend to run our
UpLib on these devices when they become available.

But interacting with documents on these devices presents
special challenges [15]. Effective use of personal documents
on these devices will require new ways of dealing with im-
ages, particularly images of text. One promising approach,
PARC’s UbiText [7], offers a way of re-flowing (essentially
re-typesetting) images of pieces of the text (characters and
words), and we hope to use it in future versions of our sys-
tem.

In the longer term, we expect to release an open-source
version of the system externally. Currently, the largest ob-
stacle to doing this is the unavailability of a reliable open-
source OCR engine, though some starts have been made.
We would like to see more work done to remedy that prob-
lem.

8. CONCLUSION
We have described the objectives, design, and implemen-

tation of a universal personal digital library that emphasizes
image-domain representation of documents, and is largely
based on open-source components. Specifically, the architec-
ture and functionality of two prototypes has been described.
The first prototype of the UpLib system has been adopted
into the daily work-flow of one of the authors over a pe-
riod of about two years, suggesting that the system is both
usable and useful (although a formal user study will be re-
quired to determine the effect of an UpLib on current work
practices). Several colleagues have begun to adopt the sys-
tem into their own work-flow. The second prototype greatly
facilitates this; it is more powerful, more robust, more ex-
tensible, and easier to use by a novice. We expect that it
will be adopted by a growing user community within PARC,

and that it will continue to improve in usability and func-
tionality as a result.

9. REFERENCES
[1] E. Adar, D. Kargar, and L. A. Stein. Haystack:

per-user information environments. In Proceedings of
the eighth international conference on Information
and knowledge management, pages 413–422. ACM
Press, 1999.

[2] M. J. Adler and C. V. Doren. How to Read a Book.
Touchstone Books, revised edition, 1972.

[3] B. B. Bederson. Photomesa: a zoomable image
browser using quantum treemaps and bubblemaps. In
Proceedings of the 14th annual ACM Symposium on
User Interface Software and Technology, pages 71–80.
ACM Press, 2001.

[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, , and
T. D. DeRose. Toolglass and magic lenses: The
see-through interface. In Proceedings of SIGGRAPH
’93, ACM Computer Graphics Annual Conference
Series, pages 73–80, Anaheim, California, August
1993.

[5] K. Bollacker, S. Lawrence, and C. L. Giles. CiteSeer:
An autonomous web agent for automatic retrieval and
identification of interesting publications. In K. P.
Sycara and M. Wooldridge, editors, Proceedings of the
Second International Conference on Autonomous
Agents, pages 116–123, New York, 1998. ACM Press.

[6] C. Bowman, P. Danzig, D. Hardy, U. Manber,
M. Schwartz, , and D. Wessels. Harvest: A scalable,
customizable discovery and access system. Technical
Report CU-CS-732-94, University of Colorado,
Boulder, Colorado, 1994.

[7] T. M. Breuel, W. C. Janssen, K. Popat, and H. S.
Baird. Paper to PDA. In Proceedings of the 16th IAPR
Internation Conference on Pattern Recognition, pages
467–479, Quebec City, Canada, August 2002. IAPR.

[8] B. A. T. Brown, A. J. Sellen, and K. P. O’Hara. A
diary study of information capture in working life. In
Proceedings of 2000 ACM Special Interest Group on
Computer-Human Interaction (CHI2000), pages
438–445, 2000.

[9] J. R. Davis, C. Lagoze, and D. B. Krafft. Dienst:
Building a production technical report server. In
Proceedings of the 1995 Advances in Digital Libraries
Conference, pages 259–271, McClean, Virginia, May
1995. IEEE Computer Society, IEEE.

[10] DELOS Working Group 2.1. Survey on existing digital
library systems, January 2001.
http://www.sztaki.hu/delos wg21.

[11] P. Dourish, W. K. Edwards, A. LaMarca, and
M. Salisbury. Presto: an experimental architecture for
fluid interactive document spaces. ACM Transactions
on Computer-Human Interaction (TOCHI),
6(2):133–161, 1999.

[12] A. Graham, H. Garcia-Molina, A. Paepcke, and
T. Winograd. Time as essence for photo browsing
through personal digital libraries. In Proceedings of
the Second ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL’02), pages 326–335, Portland,
Oregon, July 2002.

[13] D. Huynh, D. Karger, and D. Quan. Haystack: A

platform for creating, organizing and visualizing
information using rdf. In Proceedings of the Semantic
Web Workshop, The Eleventh World Wide Web
Conference 2002, 2002.

[14] J. D. Mackinlay, G. G. Robertson, and S. K. Card.
The perspective wall: detail and context smoothly
integrated. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching
through technology, pages 173–176, New Orleans,
Louisiana, 1991. ACM.

[15] C. C. Marshall and C. Ruotolo. Reading-in-the-small:
A study of reading on small form factor devices. In
Proceedings of the Second ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL’02), pages
56–64, Portland, Oregon, July 2002.

[16] W. M. Newman, C. R. Dance, A. S. Taylor, S. A.
Taylor, M. Taylor, and T. Aldhous. Camworks: A
video-based tool for efficient capture from paper
source documents. In Proceedings of the IEEE
Conference on Multimedia Systems, volume 2, pages
647–653, 1999.

[17] T. A. Phelps and R. Wilensky. The Multivalent
browser: a platform for new ideas. In Proceedings of
the 2001 ACM Symposium on Document Engineering,
pages 58–67, Atlanta, Georgia, 2001. ACM. See also
http://www.cs.berkeley.edu/ phelps/Multivalent/.

[18] S. Putz. Design and implementation of the system-33
document service. Technical Report
ISTL-NLTT-93-07-01, Xerox Palo Alto Research
Center, 3333 Coyote Hill Road – Palo Alto, CA 94304,
1993.

[19] B. N. Schilit, M. N. Price, and G. Golovchinsky.
Digital library information appliances. In Proceedings
of Digital Libraries ‘98, Pittsburgh, PA, June 1998.
ACM.

[20] The Apache Project. Jakarta Lucene Overview, 2003.
See http://jakarta.apache.org/lucene/docs/index.html.

[21] The ht://Dig Group. ht://Dig – Internet search
engine software, 2003. See http://www.htdig.org/.

[22] R. Wilensky. Personal libraries: Collection
management as a tool for lightweight personal and
group document management. Technical Report
SDSC TR-2001-9, San Diego Supercomputer Center,
9500 Gilman Drive – La Jolla, CA 92093-0505, 2001.

[23] I. H. Witten, R. J. McNab, S. J. Boddie, and
D. Bainbridge. Greenstone: A comprehensive
open-source digital library software system. In
Proceedings of the Fifth ACM International
Conference on Digital Libraries, 2000.

[24] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufmann, 2nd edition, 1999.

