
Collaborative Extensions for the UpLib
System

William C. Janssen

9 June 2004

TR−04−3

Proceedings of the Fourth ACM/IEEE Joint Conference on Digital Libraries (JCDL), June,
2004, Tucson, AZ. Pages 239−240.

Portions of this paper are Copyright 2004, Palo Alto Research Center

This paper is part of the PARC Technical Report series.

For more information on PARC, please visit our Web site at http://www.parc.com/.
Our address is:

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA

You can contact us via telephone at 650−812−4000.
You can also send e−mail to info@parc.com; it will be forwarded appropriately.

Collaborative Extensions for the UpLib System

William C. Janssen
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California, USA

janssen@parc.com

ABSTRACT
The UpLib personal digital library system is specifically de-
signed for secure use by a single individual. However, collab-
orative operation of multiple UpLib repositories is still pos-
sible. This paper describes two mechanisms that have been
added to UpLib to facilitate community building around in-
dividual document collections.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries—systems issues, user issues ; H.5.3 [Information

Interfaces and Presentation]: Group and Organization
Interfaces—collaborative computing

General Terms
Design,Human Factors

Keywords
Personal digital library, Collaboration, Metadata sharing,
Extension sharing

1. INTRODUCTION
The UpLib personal digital library system [6] provides

a secure long-term storage and retrieval system for a wide
variety of personal documents such as papers, photos, books,
and email. The system creates a full-text indexed repository
accessed through an active agent via a Web interface. It
is suitable for collections comprising tens of thousands of
documents, and provides for ease of document entry and
access as well as high levels of security and privacy. It is
highly extensible through user scripting, and is also intended
to be useful as a platform for further research into digital
libraries and computer-augmented reading.

However, the focus on individual libraries does not sup-
port some of the useful collaborative aspects of other sys-
tems designed to support multiple individuals simultane-
ously. We are exploring ways to restore this capability by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’04, June 7–11, 2004, Tucson, Arizona, USA.
Copyright 2004 ACM 1-58113-832-6/04/0006 ...$5.00.

using external server-based collaborative frameworks to cre-
ate a community of UpLib users. Two of these collaborative
mechanisms are described. One provides a way of sharing
document metadata; the other provides a mechanism for
sharing and locating customization extensions to the base
UpLib system.

2. SHARING DOCUMENT METADATA
UpLib allows the addition of metadata values for each

document, either automatically or with a Metadata Editor
built into the user interface. Systems such as CDDB [1]
have shown the power of shared metadata development by
a community working on the same document corpus, and
we wished to harness that power for communities of UpLib
users whose repositories overlap to a significant degree. For
example, two researchers in the field of digital libraries can
be expected to have many of the same technical papers in
their individual filing cabinets or on their individual hard
disks. It would be useful to share metadata previously en-
tered or corrected by others.

To identify two documents from two different reposito-
ries as being the same, a globally unique identifier for that
document is necessary. In many cases the copies in two dif-
ferent repositories are bit-for-bit identical, as they are digital
copies of the same original file; a digital hash of the docu-
ment, using an algorithm such as SHA-1, can then be used
as its unique ID. In other cases, document fingerprinting of
the document text, as discussed in [5] and [4], will allow two
slightly different versions of the same document to be iden-
tified as the same. Our system currently implements the
hash identifier, which works well for photos, PDF files, and
Powerpoint documents; we plan to add text fingerprints, as
well.

We constructed a library service which takes a document
identifier along with a set of metadata for that document
and an optional handle identifying the user providing the
information, and stores that information in a database. We
then added the ability to contact this service to the reposi-
tory code, using the built-in UpLib extension system. When
the user presses the “Share Metadata” button in the Meta-
data Editor, a subset of the user’s metadata is calculated,
then sent along with the document’s identifier and the user’s
handle; if no handle is set by the user, the information is sent
anonymously. The particular metadata fields to send can be
individually determined by settings in the user’s configura-
tion file, to avoid sending sensitive fields.

Similarly, a “Find Metadata” button calculates the docu-
ment fingerprint, then sends it with a request to the meta-

data library server for any metadata known about this doc-
ument. A list of known submissions for that document is
downloaded to the repository daemon. The user can specify
preferred submitter handles in a configuration file; if speci-
fied, they are checked to find the latest submission for that
document from a preferred submitter. That metadata is
then requested from the library, and associated with the doc-
ument in the repository. The user can also specify whether
found metadata overrides or augments existing local repos-
itory metadata for the document. The updated metadata
for the document is finally displayed in the Metadata Editor
for the user to check and, if necessary, correct.

3. SHARING UPLIB EXTENSIONS
Each repository is “guarded” by a daemon, which controls

access to the documents in the repository and provides RPC
services to various clients of the repository, such as the Web-
based UpLib user interface. The daemon’s Python code
base and operation can be modified dynamically through an
extension mechanism, which allows a client to to load (or
re-load) dynamic library modules installed for that repos-
itory simply by requesting particular named services from
the server. These modules can perform arbitrarily powerful
modifications to the server, and can perform modifications
to the standard configuration of the repository daemon at
startup time; they are often used to add a new document
analysis engine to the standard document addition pipeline.
The standard Web interface to the repository daemon in-
cludes an Extensions Manager, shown in figure 1, which
provides a view of all extensions loaded in that repository,
and provides controls for the user to deactivate, activate, or
view the code of, existing extensions.

Figure 1: A display of some of the extensions loaded

into an individual UpLib repository. Extensions are

downloaded from a shared extensions server.

The number of users willing to construct significant ex-
tensions is low compared to the number who could benefit
from those extensions. Studies such as [3] and [7] suggest
the utility of providing a mechanism that allows the efforts
of “translators” to be easily shared with the wider user pop-
ulation; systems such as PARC’s CedarChest [8] and Mozilla
Firefox’s extension library [2] convince us of the benefits of
a structured system for aggregating and distributing exten-
sions.

To support this, we added a structured documentation
system for extensions. This allows us to associate, with
each extension, not only documentation on the functional-
ity of the extension, but characteristics such as the version,
author, or Web site (if any). In the future, we plan to add
other characteristics incorporating user feedback, such as
“grades”. We then created a library service which accepts
documented extensions and stores them in a database; it also
allows the database to be searched, and extensions therein
to be downloaded. These extensions are primarily Python
code, but may also include code in other languages such Java
jar files, Perl scripts, or even compiled executables.

Finally, we added two buttons to the Extensions Manager.
The first, labelled “Contribute”, appears on the title bar
for each locally developed extension which is documented.
Pushing it packages up the code files and documentation for
the extension as a zip file, and uploads it to the extensions
library. Pushing the second, labelled “Find New Extensions
to Install”, provides a filtered view of extensions available
in the library. For each, one may read the documentation,
browse the code, visit its Web site, or download the exten-
sion to the repository. Once an extension has been installed
in a repository, the Extensions Manager allows the user to
activate it, deactivate it, or delete it.

4. CONCLUSION
We have presented the addition of metadata sharing and

extension sharing to individual personal libraries, to form
a shared community, by creating implementation-language
independent network services that can be accessed from the
repositories. We are continuing to explore this idea, using
the UpLib system, as part of the current research at PARC
into computer-augmented reading.

5. REFERENCES
[1] http://www.gracenote.com/.

[2] http://texturizer.net/firefox/extensions/.

[3] T. J. Allen. Communication networks in R&D
laboratories. R&D Management, 1(1):14–21, October
1970.

[4] A. Z. Broder. Identifying and filtering near-duplicate
documents. In Proceedings of the Conference on

Combinatorial Pattern Matching, volume 1848 of
Lecture Notes in Computer Science, pages 1–10.
Springer-Verlag, 2000.

[5] N. Heintze. Scalable document fingerprinting. In
Proceedings of the 1996 USENIX Workshop on

Electronic Commerce, pages 191–200, November 1996.

[6] W. C. Janssen and K. Popat. UpLib: A universal
personal digital library system. In Proceedings of the

2003 ACM symposium on Document Engineering,
pages 234–242. ACM Press, November 2003.

[7] W. E. Mackay. Patterns of sharing customizable
software. In Proceedings of the 1990 ACM Conference

on Computer-supported Cooperative Work, pages
209–221. ACM Press, 1990.

[8] D. C. Swinehart, P. T. Zellweger, R. J. Beach, and
R. B. Hagmann. A structural view of the cedar
programming environment. ACM Transactions on

Programming Languages and Systems, 8(4):419–490,
1986.

