Making UpLib Useful: Personal Document
Engineering

William C. Janssen, Jeff Breidenbach, Lance Good, Ashok
Popat

4 July 2005

parc

alo Alto Research Center

Portions of this paper are Copyright 2005, Palo Alto Resear ch Center
This paperis partof the PARC TechnicalReportseries.
For moreinformationon PARC, pleasevisit our Webssite at http://www.parc.com/.

Our address is:

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA

You cancontactusvia telephoneat 650-812-4000.
You canalsosende—mailto info@parc.comit will beforwardedappropriately.

Making UpLib Useful: Personal Document Engineering

William C. Janssen, Jeff Breidenbach, Lance Good, Ashok Popat
Palo Alto Research Center, Inc.
3333 Coyote Hill Road
Palo Alto, CA 94304

email: j anssen@ar c. xer ox. com

4 July 2005

Abstract

Any new system must provide significant advantages to users
for them to adopt it over their existing practices. In this paper,
we discuss changes made over the last two years of use of the
UpLib personal digital library system, to provide those advan-
tages in the realm of personal document management. These
changes are concentrated in the document acquisition phase,
where document analysisis performed and databases of docu-
ment information are prepared. However, some changes have
been made in the areas of collection management, and general
document usage, primarily to provide better interfaces to the
improved document projections.

1 Introduction

The UpLib personal digital library system [21] provides a se-
cure long-term storage and retrieval system for awide variety
of personal documents such as papers, photos, music, bills,
books, and email. It is suitable for collections comprising tens
of thousands of documents, and provided for ease of docu-
ment entry and access as well as high levels of security and
privacy. It is highly extensible through user scripting. It as-
piresto Bush’'sidea of the memex, “a device in which an indi-
vidual stores al his books, records, and communications, and
which is mechanized so that it may be consulted with exceed-
ing speed and flexibility” [5].

UpLib is implemented as a service, the “guardian angel”,
which managesadirectory containing all of the user’sarchived
documents. Requests for various document services may be
made to the server either through a secure Web browser in-
terface, or via encrypted RPC from various client programs.
These services may include adding a new document to the
repository, finding some set of documents matching specific
criteria, or fetching a document to read, either via the Web,
or in a separate display window. New capabilities may be
added individually to any repository via the built-in exten-

sion mechansim. UpLib is thus designed to be useful as
a platform for research into digital libraries and computer-
augmented reading.

But for most users, holding and serving documents is only
half the story. A personal library must also solve personal
problemsin document engineering, problemslike dealing with
paper documents, cleaning poorly scanned documents, under-
standing new document formats, or saving web pagesand mail
attachments. Thereisalso the much more complex problem of
actually using —typically reading — the archived documents.

In this paper, we discuss a number of changeswe have made
to the original UpLib system to support discovered require-
ments for personal digital libraries. UpLib can be factored
into three phases: document acquisition, when a document is
captured and analyzed by UpLib, and various databases are
updated; document management, where documentsin the sys-
tem are examined through browsing and search, and metadata
is updated; document use, where a user interacts with a stored
document for some external purpose, such as reading or use
of the document as source material in preparation of a talk
or paper. Most of our changes are concentrated in the doc-
ument acquisition phase; however, some significant changes
were needed for both the management and use parts of the
system.

2 Document Acquisition

Many of the changeswe needed to make were to make capture
of documents easier, and our automated analysis of the saved
documents more thorough. We added two new input clients,
to handle mail attachments, web pages, and paper documents
with low user effort. We also made a number of changes to
the automated analysis engines to give us better page images,
word boxes for document pages containing text, support for
larger documents, and user-extensible document format pars-

ing.

v

Page image projection

—»> Text projection >

Word box projection >

Y

» Metadata projection >

—>{ Ripper 1 h

i(Ripper N
Repository DB [*
MOTHTITIIITITe

Figure 1: Adding a document to an UpLib repository. Pro-
jections are formed in the upl i b- add- docunent client,
merged with the document original, and sent to the server,
where document analysis “rippers’ arerun.

2.1 Low-effort Capture Clients

As Brown et. a. note in [4], previous work on document
capture doesn’'t say much about how or why people capture
information for personal use. With recent rapid changes in
hard-disk capacity and digital photo capability, capture tech-
niques have changed equally rapidly, moving decisively into
the digital domain. In addition to the now familiar use of
email [12], people bookmark Web pages, archive chat ses-
sions, send each other cell-phone snapshots. Recent work by
Marshall and Bly [22] suggests that even clipping of newspa-
per and magazine articlesis now moving online.

Another characteristic of thistrend is the use of low-effort,
low-understanding user interfaces. The user now expects to
have everything happen automatically at the push of a button
(and rightly so, in our opinion). Efforts such as [16] have
exploited the push of actual hardware buttons by modifying
digital copiers to automatically capture paper documents, but
have not addressed low-impact intentional capture of elec-
tronic documents. Other systems [9, 13, 2] take advantage
of side-effect caching by programs such as Web browsers and
mail readers, providing easier search access to whatever hap-
pensto be on the user’s disk, but with little discrimination and
apparently no long-term archival support. Research platforms

such as Haystack [17] also support automatic collection of
things such as email or Web pages by interposing proxy agents
between the user and the document source, and add some dis-
crimination by using the history of user queriesto pre-filter the
collection.

In the original version of UpLib, we provided a command-
line program, upl i b- add- docunent , which, given afile
or files, performed all of the client-side processing neces-
sary for document acquisition, and sent the document to the
UpLib server. The server assigns the new document an
identifier and folder, and make it available for subsequent
use. upli b-add-docunent supports command-line op-
tionswhich allow the user to provide metadata, or control cer-
tain aspects of document processing, such as whether to per-
form OCR to retrieve text from the document’s page images.
However, in looking at what users wanted to archive with Up-
Lib, we found that many, perhaps most, documents were not
files on afilesystem, but rather either (1) pages of paper, (2)
mail attachments, (3) images on aWeb page, or (4) Web pages.
To support these usages, we introduced two new mechanisms
for adding documentsto an UpLib repository.

2.1.1 TheUpLib scan service

Thefirst capture mechanism is designed for paper documents.
It uses Flowport [28], a Xerox system which allows a user to
control document distribution by interpreting marks made on a
cover sheet when the document is run through a Xerox digital
scanner. With UpLib, the user checks one or more boxes on
their cover sheet (seefigure 2) to indicate which categoriesthe
document is to be placed in, then places the cover sheet on
top of the document to be scanned, and runs both through the
scanner. The scanned document automatically showsup in the
user’'s UpLib repository.

This service is implemented by having the Flowport server
OCR the scan job, convert it to a PDF file, and send the file,
along with any metadata specified on the cover sheet, to a sec-
ond server which interprets the metadata from the cover sheet,
andusesupl i b- add- docunent to sendtherest of the scan
job to the appropriate repository. In addition, the service pro-
videsOCR'd text of each pagefor use by therest of the system.

The UpLib scan service is available with any Flowport-
enabled scanner at our site. These scanners (which are also
printers, copiers, and fax machines) are located every hundred
feet or so on each floor of our building.

2.1.2 TheUpLib Portal

The second mechanism, the UpLib Portal, is a drag-and-drop
interface. It allows the user to drag a mail attachment from
an open email message, or a link or image or entire web
page from a web browser, and drop it on a small icon on
the user’s desktop. When the user releases the dragged doc-
ument, a submission metadata form pops up, to alow the

FIwPOrE CoverShost

Bill's UpLib Dispatcher

Figure 2: A Flowport cover sheet for the UpLib Scan Service.

user to optionally enter metadata about the document (figure
3a). The user may choose to either add metadata, or ignore
it; in either case, pressing on the “Submit” button causes the
portal to begin processing the document by submitting it to
upl i b-add- document in a subprocess. Thus the mini-
mum user effort needed to enter a visible document is a drag
plus a confirming click. The user can aso shift-click on the
Portal to open afile selector window, to permit the entry of a
specificfile.

[XeX:) UpLib Upload Parameters

/Users/wjanssen/Documents/DocEng 2003 UpLIb.ppt

806 _Find UpLib Document

¥ Remember |

Query authors:marshall janssen doceng uplib

Repasitory _https://127.0.0.1:8090/
Password

Title UpLib (DocEng 2003)
Authors William C. Janssen and Kris Popat
Date ' 11/2003

Repository _https:/ / 127.0.0.1:8090/
Password

Categories talk, slides, uplib

Keywords Format | () html @ pdf O images O text O icon O

DPI: @ 300 O () other, 4000: Action (default for format)

[No color (] No text W/ Keep blank pages _ Dryclean Min score o] Show Al

(_submit) (Submit)

Cancel) @

Figure 3: (a) The Portal submission window. (b) The Portal
query window.

The Portal also servesas aretrieval system. Clicking on the
Portal icon brings up a query form (figure 3b). The user can
typean UpLib query and press“Enter”; results are (by default)
opened directly in a new browser window. In addition to sup-
porting search-based retrieval, this interface allows the user
to fetch various versions of the document (such as the docu-
ment icon or a PDF version); to adjust the search sensitivity
viaadlider; and to fetch either only the highest-scoring match,
or all matches above the sensitivity threshold. When the user
submits the query, the Portal invokes the command-line pro-
gram upl i b- get - docunent in a subprocess to perform
the retrieval.

2.2 Document Analysis

When a document is added to an UpLib repository, it under-
goes a process called projection, in which projections of the

document into various simple spaces are performed. Our ini-
tial system extracted three projections of the document: into
page images in a multi-page TIFF file, into metadata name-
value pairs in atext file, and into text in a text file. The use
of multi-page TIFF proved unwieldy for large documents, and
we have changed our system to instead use adirectory contain-
ing numbered PNG image files, one for each page. We have
also added a new projection, word boxes. Our initial system
supported a fixed set of document formats, we have added a
mechani sm which supportsaflexible and user-extensible set of
document formats. We have also added a new pre-projection
service, called document dry-cleaning.

2.2.1 Word boxes

To support user manipulation of text in document views, we
added a new projection to our system which we call word
boxes. Thisis a description of the bounding box of each text
word on each page image of the document, arranged in read-
ing order. To create this projection, we use two techniques.
The first is used for document formats which can be coerced
into PDF, such as Microsoft Word or HTML. We have de-
veloped an extension of the program pdf t ot ext , from the
Xpdf toolkit [23], which when run against a PDF file pro-
videsalist of the words encountered and their bounding boxes,
along with potentially interesting information such as whether
the font used for that word is bold or italic. Thislist is con-
verted into a binary format and stored along with the other
projections of the document.

In some cases, the PDF form of the document cannot be
interpreted correctly by pdf t ot ext . We evaluate the out-
put of pdf t ot ext by comparing it to a statistical model of
word usage in the dominant language of the document, using
atool called scor et ext (see below). If it istoo dissimilar,
we discard the output of pdf t ot ext , and turn to our fallback
mechanism, which is also used if the document cannot reason-
ably be coercedinto PDF format. Thisrelieson using Inxight's
TextBridge OCR system to OCR the document, returning re-
sults in the XDOC format [27]. We interpret the XDOC re-
sults, converting from them to the binary format used in our
projection. We have also developed a similar pathway from
ABBYY OCR output formats.

When the document is uploaded to the UpLib guardian an-
gel, aripper processes the word boxes file into smaller files,
each containing the word box information and text of asingle
page. The word box information is transformed to reflect the
scaling and translation of the reduced-DPI pageimagesformed
as part of the normalization step of the UpLib document incor-
poration pipelined described in [21].

2.2.2 Evaluatingtext projectionswith scor et ext

For any given document, generation of the text projection can
usually be carried out in several different ways. For instance,

if the document isaPDF file, one could run any of several pro-
gramsdesigned to extract the text layer from the file if present.
If the text layer is not present, as might be the case when the
PDF was generated by scanning a paper document without
OCRIing, an OCR step can be performed to generate the tex-
tual version. Moreover, there may be a choice between several
available OCR programs. If the scanned document happensto
be clean, has a simple layout, and uses a single well-known
font, then an open-source program like ocrad might perform
sufficiently well. On the other hand, if the document has com-
plex layout or has other difficult-to-OCR characteristics, then
use of acommercial OCR system may be required. In general,
the different means of generating the text projection will result
in varying levels of accuracy and will also present different
costs in terms of time and possibly licensing fees. It is desir-
able therefore to be able to choose the method of conversion
according to the required accuracy and estimated cost. We as-
sume that reliable estimates of the time and licensing costs are
available, and focus on automated estimation of the accuracy
of the projection with a program called scor et ext. The
general approach is to compute the linguistic validity of the
text with respect to a precomputed language model.

In its full generality, a probabilistic language model would
specify a probability distribution over all finite sequences over
a given alphabet, for instance UTF-8. For smplicity we re-
strict the language model to be factorable as a sequence of
probability distributions over individual characters, each con-
ditioned on a subset of preceding characters. Let the apha
bet be A, and let v, ..., v, denoteastring withv; € A,i =
1,...,n. Let T beatermination symbol, and let A" = AU{7}.
We view strings as having been formed by the following pro-
cess. Characters are generated sequentially according to a se-
guence of conditional probability distributions

Svie1) (D)

where v, € A, v,...,v.1 € A, i = 1,2,..., and
the function ¢;(v1, ..., v;—1) Maps contexts into equivalence
classes. The string terminates when the symbol 7 is generated.

For simplicity, we remove the dependence of p in (1) on 4,
and restrict ¢;(v1, ..., v;—1) to be of theform

pi(vilvr, ..., vim1) = pi(vi|di(va, . .

ifi <N
otherwise

2
for afixed small integer N. With these restrictions, (1) isre-
ferred to as a character V-gram language model, hereinafter
referred to smply as an N-gram mode!:

-7Ui—1)
-,Ui—l)

(Ul, ..
(Vi—N41, - -

@(vl,...,vu)—{

3)

where N; = min{i, N}. Such N-grams are simple and ef-
fective in capturing important statistical regularity in natural
language strings. We therefore adopt their use here. To illus-
trate the ability of the N-gram to model English, we exhibit

pi(vilve, ..., vim1) = p(uilvie N1, -+ -, Vic1)

a pseudorandom string that was obtained by sequentially sam-
pling from a 5-gram model trained on the Brown corpus[14]:

And fine alone other Itality and
agai ns she tunor his result, from
of Brannot facul ous shal
precentative inter at lear tinme to
much a rel anguages proposal ? Baer
fall over Open-negaw of npbst used
agreen during represearchbi shes of
chlor] But the first position a
little rear intenant year-olds to
And al so if we shoul d beef
chil di ng face graduates

Once the language model p;(v;|vy,...,v;—1) has been
trained on example data from the target language, it is used
to assess the quality of the output of a text-conversion pro-
cess by computing the per-letter coding cost (in bits) of the
sequence with respect to the model. scor et ext prints a
score directly related to the average number of bits per let-
ter that would be emitted by an ideal compressor when using
the N-gram model, on the subject text. At the beginning of
the document some of the conditioning characters specified by
the N-gram model will be unavailable, corresponding to char-
acter |locations before the first character in the converted text.
These unavailable characters are taken by scor et ext to be
space characters. The score reported by scor et ext isthen
used to decide whether or not the text file contains linguisti-
cally valid text by comparing it with a user-specified threshol d.
In principle, the score could be used to choose among several
competing text-conversion results; currently it is used to sm-
ply accept or reject each text-conversion attempt considered in
a predetermined sequence.

2.2.3 Theformat parser framework

Theworld delights in inventing new formats in which to store
documents, and users sometimes seem to have a perverse tal-
ent for seeking out those formats and using them. To cope
with this, we have defined an extensible framework for han-
dling new document formats. Our format parser is defined in
Python, a dynamically-typed language with automatic com-
pilation of modified sources. Each document format (PDF,
Microsoft Word, TIFF, etc.) is handled by a subclass of the
base class Docunent Par ser. The input analyzer uses in-
trospection to construct a list of all available parser classes,
and calls the myf or mat class method of each class, passing
the document as an argument, until one of the parser classesin-
dicates that it should handle the document’sformat. The order
in which these tests are performed may be partially controlled
by the use of BEFORE and AFTER clausesin each class, which
can specify apartial order with respect to other classes.

When the appropriate class is identified, an instance of the
discovered class is instantiated, bound to the input document,

and the pr ocess method of the instance is invoked, which
in turn invokes other methods for constructing the text, page-
image, and word-box projections, or extracting metadata ele-
ments. Each of these methods can be overridden in a format-
specific subclass to provide specia processing. For example,
the JPEG parser overrides the metadata-extraction method to
handle embedded EXIF datain the image.

Users can easily extend this framework for new document
formats by defining new parser classes (which can just be sub-
classes of existing parser classes) in a file and making the file
known to the system by setting an appropriate user configura-
tion parameter. Since Python automatically compiles modified
source files, there is no need for the user to perform explicit
compilation or linking. Parser classes defined in user files are
integrated into the list of parsersformed by the input analyzer.
Since each user file will be reloaded on each invocation of
theupl i b- add- docunent command, the new parser class
is easily debugged without re-starting or re-installing the Up-
Lib system. To further aid in debugging, we have added the
- - noupl oad switch to upl i b- add- docunent, which
performs the full projection calculations, but instead of up-
loading the resultant files to the UpLib guardian angel, leaves
them in atemporary directory.

2.24 Document dry-cleaning

Scanned documents frequently contain some visual noise
which users would rather not see. To handle this, we added
an optional “dry-cleaning” operation on input images, which
consists of two stages. The first stage removes pepper (small
noise flecks) by using standard morphological operationson a
scaled-down binarized form of the image. The second stage
estimates the skew of the page using two different skew detec-
tion techniques. If askew angleis detected with sufficient con-
fidence, a high-speed rotation operation is performed which
moves around all the pixels of the page image; no interpola-
tion is performed, though an attempt is made to avoid long
horizontal shear lines.

Dry-cleaning is only performed on the page image projec-
tion of the document. If original pageimages are present, they
are not modified in any way. The page image projection is
later used to create anti-aliased reduced-scale versions of the
page images, which are then used in the page-reading clients.
Thuslater usageisamost always of the dry-cleaned version of
the document, unlessthe user specifically requeststhe original
version from the UpL.ib repository.

2.25 Dealingwith Web pages

Capturing Web pages becomes an interesting challenge. Pages
in relatively well-behaved single-file formats such as PDF or
Microsoft Word are simply copied localy; the MIME type of
the page is used to select an appropriate format parser class.
However, HTML is a poorly behaved document format, as it

Figure 4: (a) The default view of a repository. The display
shows thumbnailsfor the most-recently-used (or added) docu-
ments. (b) A textua display. We show the title, authors, date,
and document ID. Each author’s name is a link to a search
for other papers by that author. Parts of the date are links to
searches for other documents with that date.

can have dangling references when simply copied. To address
this, we restrict our support to two kindsof HTML documents:
the Mozilla“ Web Page Complete” format, and an HTML page
on aremote Web server. We use HTMLDOC [1] both as a Web
spider for remote pages, and to convert the HTML into PDF
for projection processing.

Users expect to be able to capture any page that they can see
with their Web browser. To accomplish this, our HTML for-
mat parsers can read browser cookie files, so that they can ask
for the remote page with all the capabilities that the browser
would have. In addition, we modified the remote Web page
format parser and HTM_LDOC to send a“ Referer” header when
fetching a page, as some web sites requireit.

3 Managing Documents

Once a digital library contains thousands of documents, the
reader must have ways of browsing and searching this cor-
pus, to find the specific documentsthey are interested in work-
ing with. The UpLib Web interface provides both visual and
textual displays of subsets of the document space, and allows
searches with a powerful search engine. Results are displayed
in ahighly visual form, allowing usersto exploit their percep-
tual abilitiesto locate the correct document from asmall set of
search results. Alternate display modes can be used for partic-
ular tasks.

3.1 Viewingthe Repository

Document icons are generated automatically for any document
placed in an UpLib repository (see [21] for details). Figure
4a shows that these icons are often visually distinctive; fig-
ure 5b shows that this is not always true. Colored labels can
now be added to nondescript document icons to bolster their
visua identity; one is shown in figure 4a. The size of the
iconisrelated to the size of the original document according to

106-34-1797-362-7597

Figure 5: Date-oriented displays of a collection. (a) On the
left, the collection is sorted by publication date. Labelled hor-
izontal stripes divide years. (b) On the right, the collection
is sorted by date of addition to the user’s library. Note that
month tombstones divide the thumbnails, when more than 5
documents occur in one year.

the “log-area’ algorithm described in an earlier paper on this
work, [19], and givesthe user an additional visual cueasto the
document identity.

The default top-level display of an UpLib repository shows
document icons for each of the N most recently used doc-
uments. An example is shown in figure 4a, where we can
see 15 of the most recently used or added documents without
scrolling the page. This display can be varied from thumb-
nail to textual (figure 4b), or a combination view which shows
the thumbnail along with the title, abstract or comment, au-
thors, and date. In our original system, all three of these views
showed the most recently used documentsin the repository.

In our current system, each of these three views can also be
varied to show the results sorted by either date of document
publication (figure 5a), or by date of addition to the reposi-
tory (figure 5b), two views inspired by the work Bier et. al.
describe in [3]. When either of the date-based views is used,
the most recent year is displayed at the top of the window, and
documents are ordered from oldest to newest within that year.
If a year includes more than five documents (this number is
user-configurable), month markers are shown between docu-
ments published or added in different months.

Visit =
T*-jmrward

== | M{<adata
= = === Metadata (raw) || —=
= = '_ Originals t——
— |PDF

=mmers Remove Dac
==Text

~— |URL hatspats
‘Wordbox I

he Design and Luﬂg:[;'r;ﬁ;;m a Personal
lectronic Motebook: A Reflective Analysis

Figure 6: (@) Each icon has a tool-tip with title, author, and
page count. (b) Each icon has a pop-up menu to invoke ac-
tions on that document; here the user has dragged down to the
“Metadata’ action, which opens a metadata editor window.

Each icon is “tool-tipped” with the title and author of the
document, as seen in figure 6. Each icon also serves asthe an-
chor for a CSS/Javascript pop-up menu of actions that can be
performed on the document. Simply clicking on the icon will
invoke the default action, “Visit”, which opens the document
in areader. Users can add actionsto this menuin their config-
uration files; UpLib extensions[18] can also add actions.

3.2 Categoriesand Collections

Like Placeless [10] and MyL.ifeBits [15], UpLib does not at-
tempt to associate documents with specific locations on afile-
system. While this has advantages from a document manage-
ment point of view, users expect adocument to have some sort
of location where they can find it again when they need it. To
providethis sense of “place”, adigital library system needsto
offer other kinds of locations in which users can expect to find
particular documents. UpLib providestwo such concepts, the
category and the collection. Both have been modified slightly
from the original design.

Documents can be associated with particular category
names. Our origina system just used aflat namespace of cat-
egories; in our most recent version, this has been changed to
allow a hierarchical naming system. These categories form a
hierarchical personal “concept map” for each repository. Doc-
uments can appear in any number of categories, thus having
multiple “places’ where they can be found. New categories
can be created simply by associating the category name with
one or more documents. One of the principal ways of finding
documentsin UpLib isto retrieve al the documentsin a cate-
gory, and then use either the thumbnail or textual view of that
subset to find the desired document or documents.

Collections in the original system were simply named
queries, when the user “opened” the collection, the query was
run, and the results presented. In our current system, we have
moved to the dightly more sophisticated form of named query
used in Presto [11]; a query is run against the document cor-
pus, and the results of the query are merged with explicit in-
clusion or exclusion of specific documentsto form the collec-
tion’s contents.

3.3 Searching for Documents

Each document entered into an UpLib repository is full-text
indexed with an application that uses the Lucene library [26]
for indexing and search. Because Lucene can index named
fieldsfor each document, metadata fields such astitle, authors,
or publication date can be indexed along with the text of the
document, and used as specific search terms limited to those
metadata fields. However, searches on plain text terms will
also work; those terms are searched for in the content of the
document, and in various appropriate metadata fields. The ex-
act set of metadata fields searched over can be configured by
the user.

We have made several modifications to the original search
system. In the original, we used the Lucene query parser in
its default mode of combining multiple search terms. For
instance, the search “authors;janssen ebooks’ would find all
documents either authored by Janssen, or containing the word
“ebooks’. To find all documents authored by Janssen and con-
taining the word “ebooks’, the query would have to specified
as “authors;janssen AND ebooks’. Users found this confus-
ing, mainly because Web search engines default to ANDing
of search terms. We developed a modified multi-field query
parser which would support this usage, and changed the de-
fault.

Another issue poorly supported by our original system was
the exclusionary search, such as* show me all documentsNOT
about ebooks’. The default Lucene query system did not sup-
port such queries, mainly because there is no way to indicate
“all documents’. To addressthis, we added a pseudo-category
caled “_(any)_", to which all documents are added. We then
modified the query parser so that queries which consist solely
of exclusionary elementsare automatically rewrittentoinclude
“categories._(any)_" asaninclusionary clause. Thus, the query
“-ebooks” is rewritten as “ categories:_(any)_ AND -ebooks”,
which providesthe effect desired by the user.

The results of a search can be displayed in the various
formats discussed earlier. Figure 5a shows a typical date-
published icon listing: the document icon is displayed; the
search score is available in the tooltip for the icon. Clicking
on the icon opens the document in the document reader dis-
cussed below. The results of a search can also be saved as
a named collection. Saved collections can be easily accessed
through a pull-down menu at the top of the UpLib repository
Web view.

3.4 Replacing Document Content

We have found a number of situationsin which the user would
like to replace the content of an existing document with a new
version of that content. For example, in one application, a
technical paper would be parsed to find citations from that pa-
per to other papers [3]. The application created “ghost” doc-
uments in the UpLib repository for each of the cited papers,
which contained only some metadata, but no real content. This
allowed them to get document identifiers for that document
from the repository, which could be used as valid UpLib doc-
ument identifiers in the application. The application would
then at some point in the paper encounter a full copy of the
cited work, and wish to replace the ghost entry with the valid
copy. In another case, the user wanted to continually update
the stored document to the latest version asit was revised over
aperiod of months, but without creating multiple copies of the
document and its metadatain the repository.

As reported in [21], when a document is added to an
UpLib repository, it is processed by a series of document
analysis engines, which we call rippers. This chain of rip-

8006

A Confederation of Taols for Capturing and Accessing Collaborative Activity

Detach (2)
forward
Metadata
Metadata (raw)
Originals
PDF
Remove Doc
Text
URL hotspots
‘Wordbox

[OoD0>ee s v

Figure 7: The current UpLib Web interface. Operations that
can be performed on the document are shown in the upper | eft,
along with a search box to find other document. Other recently
used documentsare shown in the lower |eft; clicking on one of
them switches to a display of that document.

pers can be extended or arbitrarily modified through instal-
lable extensions to UpLib which can be downloaded on a
per-repository basis from a central extension library, as de-
scribed in [18]. We decided to support replacement of con-
tent by adding a powerful general mechanism which alows
any ripper to abort the incorporation of a new document into
the repository. This is done by raising a specific exception,
Abor t Docunent | ncor por at i on,fromthe code of arip-
per.

This allows the implementation of pseudo-rippers which
can accomplish the replacement. For example, a ripper to
handle replacement of ghost documents with true data would
examine the metadata of a new candidate document. If it en-
countered a specific metadatatag, the value of which would be
avalid document id, it would copy the new document’s data
into the folder of the existing document, start a re-indexing of
the modified document, and abort the incorporation of the new
document, now determined to be simply replacement content
for an existing document.

4 Reading Documents

In the original system reported in [21], documents were read
in aWeb browser, using a page-reader view. A document page
image was presented on the right side of a Web page; docu-

ment page thumbnailswere available in a column to the | eft of
the page display. Clicking on the right side of the page would
turn to the next page; clicking on the left side, the previous
page. Explicit next-page and last-page buttons were also visi-
blein acontrol strip to the right of the document page image.

This interface suffered from a number of deficiencies. Too
few page thumbmails were visible along the | eft side to be re-
aly useful, and the column of thumbnails did not track the
position of the user in the document. The successive large
page images cluttered the browser history, and made it diffi-
cult to “get out of” the document. There was no way to find
text passagesin atext document. Perhaps the most commonly
remarked problem was that there was no ability to annotate
pages as they were being read. To address these problems, we
developed a new reading system called “ReadUp”. ReadUp is
implemented as a Java Swing widget, and can be deployed in
either standalone Java applications (clients for UpLib), or in
applet form suitable for use in a browser page.

4.1 TheReadUp Widget

The ReadUp widget is implemented as a user-interface ele-
ment for the Java Swing user-interface toolkit, along with a
number of auxiliary classesthat allow it to read from, and write
to, an UpLib server. In this section, we briefly describe the de-
sign and operation of thewidget; afull description isavailable
as[20].

In layout, the widget mimics the earlier reading interface
designed for the first version of UpLib: a page image is dis-
played, along with a sidebar which provides page-turning and
other controls. An new visual feature is the presence of page-
edge indicatorg/controls at the top and bottom of the page im-
age, which provide the user with an indication of where they
are in the document, and direct access to other parts of the
document. Pages can be turned in various ways: by clicking
on the left or right side of the page, by “riffling” throught the
pages with the mouse wheel, by using bookmark “ribbons’,
etc. The reader can view all the pages of the document laid
out as thumbnails (figure 8b), and jump through the document
by clicking on those thumbnails. Page turns may be animated.
Theinterface can be operated with either amouse or a pen.

The XLibris system [25] may have been the first to sup-
port direct marking of the virtual paper sheets with a pen.
In ReadUp, the user can also draw directly on the document
pageswith avariety of virtual pensand highlighters, or on sep-
arate note sheets, which also support atext editor with support
for image pasting and hypertext links (see figure 8a). Incre-
mental text search in the document is supported, as is selec-
tion of text and copying of it to the system clipboard, or to
note sheets.

The design of ReadUp was heavily influenced by the
O'Hara and Sellen study reported in [24], and by the prior
PARC work on WebBook [7]. O’ Haraand Sellen suggest three
major requirements for future “paper-like” reading systems:

Figure 8: (a) An annotated page. (b) The overview mode,
showing page thumbnails.

recognize that annotation can be an integral part of reading
and build support for it; quicker, more effortless navigation
techniques; more flexibility and control in spatial layout. We
believe that ReadUp’s annotation and navigation facilities ably
support the first two requirements, and itsimplementation asa
widget, rather than as a standal one application, makesit easier
for applicationsto achieve the third objective.

Behind the visibleinterface, ReadUp also provides somere-
source management algorithms to decrease coupling between
interface client and UpLib server. Memory-intensiveresources
such as page images are kept in a two-level client side cache
that is integrated with the Java virtual machine's garbage col-
lector, so that unused resources can be reclaimed as necessary.
Upon re-use of that resource, the reclaimed resource is either
loaded from alocal disk cache, or re-fetched from the UpLib
repository, as needed.

Unlike systems such as Open-The-Book [8] and 3Book [6],
ReadUp is implemented as a pure Java widget which does not
need any non-standard libraries. This allows it to be used in
systems which do not permit foreign libraries to be installed,
such as Web applets. ReadUp has been integrated into the
Web interface for UpLib by using applet technology. Figure
7 shows the current reading interface, using the ReadUp wid-
get running in a Java Plug-in applet. In addition, the ReadUp
technology is being used in several other UpLib clients, such
asthework described in[3], and in asimple document retrieval
application described in the next section.

4.2 The ReadUp Application

In addition to the Web page ReadUp appl et, a search-oriented
standalone ReadUp application has been developed. When
started, this application displays the search panel shown in
figure 9. The user may adjust the sensitivity of the search,
and decide whether to display only the top-scoring document
(the default), or all documents which exceed the search score
threshold.

ReadUp on https://127.0.0.1:8090/

Query authors:marshall e-books for i‘egal researc‘h[|

Repository https://127.0.0.1:8090/
Password

Min score =———fF————"r

{ Cancel)

_ Show All

——\
[Submit)
it

Figure 9: The ReadUp application’s search window.

I =

Figure 10: ReadUp windows on a user’swork surface.

The matching documents are then displayed in individual
top-level ReadUp windows. These windows are resizable, au-
tomatically scaling the ReadUp display to accommodate the
reader’s desired page size, and can be toggled between single-
page and two-page display modes with a function key. More
documents can be retrieved from the library by searching for
them, using any of the existing open documentsto initiate the
search. Combined with a good window manager, this can pro-
vide a very useful way of working with a set of documents.
Figure 10 shows a computer desktop during the preparation
of this paper, using the MacOS X window manager’s Exposé
view. There are a number of open ReadUp windows contain-
ing various source documents for this paper, edit windows for
the paper itself and the bibliography, and a PDF proofing win-
dow for the paper. The UpLib portal icon can be seen at the
very far right, in the center.

5 Observationsand Future Work

Two years of experience with UpLib revealed a number of in-
teresting deficienciesin our initial design. Many (most?) doc-
uments users want to save seem not to be on their file systems,
but rather available as Web pages or email attachments, or as
paper. This however is in accord with our belief that any sin-
gle user interface for document capture will be insufficient for
all users, and that a large number of capture tools will always
be necessary, to support the diverse collection of workflow mi-
crocultures present in every document-using society.

Thedrag-and-drop approach used in the UpLib Portal seems
to provide a useful low-effort general-purposeinterfacefor in-
cidental personal document capture. We wonder if this in-
terface could be adapted for larger group digital libraries, in
university or corporate settings. In this context, documents
dropped onto the portal would be forwarded to professional
curation staff as suggested additions to the library. The search
functionality of the Portal could be used as is in the larger
group setting.

Interfaces for useful collection management are an active
areaof research. Thelatest version of UpLib’sbasic Web inter-
face for collection management adds various date-related and
textual display options. UpLib itself also provides new doc-
ument icon generation algorithms that convey a better sense
of the document’s relative physical size, giving the reader an
additional perceptual cue for document recognition.

The ReadUp document reader combined with an UpLib
repository now provides readers with a standard annotation-
supporting page-oriented consistent reading interface for doc-
uments of any format, which users seem to appreciate. Small
touches such as page-turn animation, remembering which
page the user was on the last time they opened the document,
and effective text search, seem to provide major usability ben-
efits. We have had reports of readers putting documents into
UpLib not because they especially want to save them for the
future, but because they want to read them with ReadUp in-
stead of Adobe Reader, or their Web browser. The advantages
of aReadUp-stylereading interface do not seem limited to per-
sonal digital libraries (thoughit clearly gainsleveragefromthe
projection-oriented design of UpL.ib); this approach could be
easily used with larger group libraries.

We are currently exploring a range of more complex docu-
ment management interfaces for the repository, and additional
display modes for ReadUp. As improvements to document
analysis and augmentation capabilities are made, we expect
these interfaces to continue to change. When reading with
ReadUp, all user actions, such as page-turning or searching,
are optionally logged back to the user’s UpL.ib repository. We
are exploring ways in which this usage information can be ex-
ploited to give the user a more personalized, or easier to use,
interface. In addition, we are looking at ways to confederate
users individual repositories, allowing a user to search over
their colleague's collections.

6 Acknowledgements

We'd like to thank Eric Bier for many substantial conversa-
tionsand feedback about the operation of the system, and Olga
Gurevich and Lauri Karttunen for development of the linguis-
tic technology used in the ADH display subsystem of ReadUp.

References

[1]
(2]

(3]

[4]

(5]

(6]

(8]

[9]

[10]

[11]

[12]

Htmldoc, 2005. See http://www.htmldoc.org/.

Apple Computer. Spotlight: Find any-
thing on your Mac instantly., 2004.
See http:/limages.apple.com/macosx/tiger/pdf/ Spot-
light_Tech_Preview_20050111.pdf.

E. Bier, L. Good, K. Popat, and A. Newberger. A docu-
ment corpus browser for in-depth reading. In JCDL ' 04:
Proceedings of the Fourth ACM/IEEE Joint Conference
on Digital Libraries, pages 87-96, June 2004.

B. A. T. Brown, A. J. Sellen, and K. P. O'Hara. A diary
study of information capturein workinglife. In CHI ' 00:
Proceedings of the SSIGCHI Conference Human Factors
in Computing Systems, pages 438-445, 2000.

V. Bush. As we may think. The Atlantic Monthly,
176(1):101-108, 1945.

S. K. Card, L. Hong, J. D. Mackinlay, and E. H. Chi.
3book: ascalable 3d virtual book. In Extended abstracts
of the 2004 conference on Human factors and computing
systems (CHI), pages 1095-1098. ACM Press, 2004.

S. K. Card, G. G. Rabertson, and W. York. The Web-
Book and the Web Forager: An information workspace
for the World-Wide Web. In CHI '96: Proceedings of
the SGCHI Conference on Human Factors in Comput-
ing Systems, 1996.

Y.-C. Chu, D. Bainbridge, M. Jones, and I. H. Wit-
ten. Redlistic books. a bizarre homage to an obso-
lete medium? In JCDL '04: Proceedings of the
4th ACM/IEEE-CSjoint conference on Digital libraries,
pages 78-86. ACM Press, 2004.

R. Dornfest. Google your desktop, October 2004.
See http://www.oreillynet.com/pub/a/network/
2004/10/14/google_desktop.html.

P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping,
K. Petersen, M. Sdlisbury, D. B. Terry, and J. Thorn-
ton. Extending document management systems with
user-specific active properties. ACM Trans. Inf. Syt.,
18(2):140-170, 2000.

P. Dourish, W. K. Edwards, A. LaMarca, and M. Sal-
isbury. Presto: an experimental architecture for fluid
interactive document spaces. ACM Transactions on
Computer-Human Interaction (TOCHI), 6(2):133-161,
1999.

N. Ducheneaut and V. Bellotti. E-mail as habitat: an
exploration of embedded personal information manage-
ment. interactions, 8(5):30-38, 2001.

10

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins. Stuff I’'ve Seen: a system for personal
information retrieval and re-use. In SGIR’03: Proceed-
ings of the 26th annual international ACM S GIR con-
ference on Research and development in informaion re-
trieval, pages 72-79. ACM Press, 2003.

W. N. Francis and H. Kucera. Brown corpus maunal:
manual of information to accompany a standard corpus
of present-day edited American English, for usewith dig-
ital computers. Brown University, Providence, Rhode Is-
land, 1964.

J. Gemmell, G. Bell, R. Lueder, S. Drucker, and
C. Wong. MyLifeBits: fulfilling the memex vision. In
MULTIMEDIA '02: Proceedings of the tenth ACM in-
ternational conference on Multimedia, pages 235-238.
ACM Press, 2002.

J. J. Hull and P. E. Hart. Toward zero-effort personal
document management. Computer, 34(3):30-35, 2001.

D. Huynh, D. Karger, and D. Quan. Haystack: A plat-
form for creating, organizing and visualizing information
using RDF. In Proceedings of the Semantic Web Work-
shop, The Eleventh World Wide Web Conference 2002,
2002.

W. C. Janssen. Collaborative extensions for the Up-
Lib system. In JCDL 2004: Proceedings of the Fourth
ACM/IEEE Joint Conference on Digital Libraries, pages
239-240, June 2004.

W. C. Janssen. Document icons and page thumbnails:
Issues in construction of document thumbnails for page-
image digital libraries. In ECDL 2004: Proceedings of
the Eighth European Conference on Digital Libraries,
pages 111121, 2004.

W. C. Janssen. Readup: A widget for reading. Techni-
cal Report TR-05-03, Palo Alto Research Center, April
2005. http://www.parc.com/janssen/pubs/TR-05-3.pdf.

W. C. Janssen and K. Popat. UpLib: A universal personal
digital library system. In DocEng 2003: Proceedings of
the ACM symposium on Document Engineering, pages
234-242. ACM Press, November 2003.

C. C. Marshall and S. Bly. Saving and using encountered
information: Implications for electronic periodicals. In
CHI ' 05: Proceedings of the Conference on Human Fac-
torsin Computing Systems, April 2005.

D B. Noonburg.

. Xpdf.
See http://www.foolabs.com/xpdf/.

K. O'Haraand A. Sellen. A comparison of reading pa-
per and on-line documents. In CHI *97: Proceedings of

[25]

[26]

[27]

[28]

the SSIGCHI conference on Human factors in computing
systems, pages 335-342. ACM Press, 1997.

B. N. Schilit, G. Golovchinsky, and M. N. Price. Be-
yond paper: supporting active reading with free form
digital ink annotations. In CHI '98: Proceedings of the
SIGCHI conference on Human factorsin computing sys-
tems, pages 249-256. ACM Press/Addison-Wesley Pub-
lishing Co., 1998.

The Apache Project. Jakarta Lucene Overview, 2003.
See http://jakarta.apache.org/lucene/docs/index.html.

Xerox Corporation. XDOC Data Format Technical Spec-
ification, 1995.

Xerox Corporation. Xerox FowPort, 2004.
See http://www.xerox.com/go/xrx/equipment/ prod-
uct_details.jsp?prodl D=FlowPort2.

11

